Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Cell Chem Biol ; 31(4): 760-775.e17, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38402621

RESUMO

Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.


Assuntos
Aminoacil-tRNA Sintetases , Antifúngicos , Animais , Camundongos , Antifúngicos/farmacologia , Aminoacil-tRNA Sintetases/genética , Candida albicans , Relação Estrutura-Atividade
2.
J Infect Dis ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38298144

RESUMO

BACKGROUND: Macrolide antibiotics, including azithromycin, can reduce under-five mortality rates and treat various infections in children in sub-Saharan Africa. These exposures, however, can select for antibiotic-resistant bacteria in the gut microbiota. METHODS: Our previous randomized controlled trial (RCT) of a rapid-test-and-treat strategy for severe acute diarrhoeal disease in children in Botswana included an intervention (three-day azithromycin dose) group and a control group that received supportive treatment. In this prospective matched cohort study using stools collected at baseline and 60 days after treatment from RCT participants, the collection of antibiotic resistance genes or resistome was compared between groups. RESULTS: Certain macrolide resistance genes increased in prevalence by 13% to 55% at 60 days, without differences in gene presence between the intervention and control groups. These genes were linked to tetracycline resistance genes and mobile genetic elements. CONCLUSIONS: Azithromycin treatment for bacterial diarrhoea for young children in Botswana resulted in similar effects on the gut resistome as the supportive treatment and did not provide additional selective pressure for macrolide resistance gene maintenance. The gut microbiota of these children contains diverse macrolide resistance genes that may be transferred within the gut upon repeated exposures to azithromycin or co-selected by other antibiotics.

3.
Nat Chem Biol ; 20(2): 234-242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37973888

RESUMO

The efficacy of aminoglycoside antibiotics is waning due to the acquisition of diverse resistance mechanisms by bacteria. Among the most prevalent are aminoglycoside acetyltransferases (AACs) that inactivate the antibiotics through acetyl coenzyme A-mediated modification. Most AACs are members of the GCN5 superfamily of acyltransferases which lack conserved active site residues that participate in catalysis. ApmA is the first reported AAC belonging to the left-handed ß-helix superfamily. These enzymes are characterized by an essential active site histidine that acts as an active site base. Here we show that ApmA confers broad-spectrum aminoglycoside resistance with a molecular mechanism that diverges from other detoxifying left-handed ß-helix superfamily enzymes and canonical GCN5 AACs. We find that the active site histidine plays different functions depending on the acetyl-accepting aminoglycoside substrate. This flexibility in the mechanism of a single enzyme underscores the plasticity of antibiotic resistance elements to co-opt protein catalysts in the evolution of drug detoxification.


Assuntos
Aminoglicosídeos , Histidina , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Bactérias/metabolismo
4.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38052426

RESUMO

Microbial natural products are specialized metabolites that are sources of many bioactive compounds including antibiotics, antifungals, antiparasitics, anticancer agents, and probes of biology. The assembly of libraries of producers of natural products has traditionally been the province of the pharmaceutical industry. This sector has gathered significant historical collections of bacteria and fungi to identify new drug leads with outstanding outcomes-upwards of 60% of drug scaffolds originate from such libraries. Despite this success, the repeated rediscovery of known compounds and the resultant diminishing chemical novelty contributed to a pivot from this source of bioactive compounds toward more tractable synthetic compounds in the drug industry. The advent of advanced mass spectrometry tools, along with rapid whole genome sequencing and in silico identification of biosynthetic gene clusters that encode the machinery necessary for the synthesis of specialized metabolites, offers the opportunity to revisit microbial natural product libraries with renewed vigor. Assembling a suitable library of microbes and extracts for screening requires the investment of resources and the development of methods that have customarily been the proprietary purview of large pharmaceutical companies. Here, we report a perspective on our efforts to assemble a library of natural product-producing microbes and the establishment of methods to extract and fractionate bioactive compounds using resources available to most academic labs. We validate the library and approach through a series of screens for antimicrobial and cytotoxic agents. This work serves as a blueprint for establishing libraries of microbial natural product producers and bioactive extract fractions suitable for screens of bioactive compounds. ONE-SENTENCE SUMMARY: Natural products are key to discovery of novel antimicrobial agents: Here, we describe our experience and lessons learned in constructing a microbial natural product and pre-fractionated extract library.


Assuntos
Antineoplásicos , Produtos Biológicos , Produtos Biológicos/química , Biblioteca Gênica , Fungos/genética , Indústria Farmacêutica
5.
mBio ; : e0179123, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014974

RESUMO

IMPORTANCE: Cfr is an antibiotic resistance enzyme that inhibits five clinically important antibiotic classes, is genetically mobile, and has a minimal fitness cost, making Cfr a serious threat to antibiotic efficacy. The significance of our work is in discovering molecules that inhibit Cfr-dependent methylation of the ribosome, thus protecting the efficacy of the PhLOPSA antibiotics. These molecules are the first reported inhibitors of Cfr-mediated ribosome methylation and, as such, will guide the further discovery of chemical scaffolds against Cfr-mediated antibiotic resistance. Our work acts as a foundation for further development of molecules that safeguard the PhLOPSA antibiotics from Cfr.

7.
Microbiol Spectr ; : e0037023, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646518

RESUMO

The overuse of antibiotics in humans and livestock has driven the emergence and spread of antimicrobial resistance and has therefore prompted research on the discovery of novel antibiotics. Complestatin (Cm) and corbomycin (Cb) are glycopeptide antibiotics with an unprecedented mechanism of action that is active even against methicillin-resistant and daptomycin-resistant Staphylococcus aureus. They bind to peptidoglycan and block the activity of peptidoglycan hydrolases required for remodeling the cell wall during growth. Bacterial signaling through two-component transduction systems (TCSs) has been associated with the development of S. aureus antimicrobial resistance. However, the role of TCSs in S. aureus susceptibility to Cm and Cb has not been previously addressed. In this study, we determined that, among all 16 S. aureus TCSs, VraSR is the only one controlling the susceptibility to Cm and Cb. Deletion of vraSR increased bacterial susceptibility to both antibiotics. Epistasis analysis with members of the vraSR regulon revealed that deletion of spdC, which encodes a membrane protein that scaffolds SagB for cleavage of peptidoglycan strands to achieve physiological length, in the vraSR mutant restored Cm and Cb susceptibility to wild-type levels. Moreover, deletion of either spdC or sagB in the wild-type strain increased resistance to both antibiotics. Further analyses revealed a significant rise in the relative amount of peptidoglycan and its total degree of cross-linkage in ΔspdC and ΔsagB mutants compared to the wild-type strain, suggesting that these changes in the cell wall provide resistance to the damaging effect of Cm and Cb. IMPORTANCE Although Staphylococcus aureus is a common colonizer of the skin and digestive tract of humans and many animals, it is also a versatile pathogen responsible for causing a wide variety and number of infections. Treatment of these infections requires the bacteria to be constantly exposed to antibiotic treatment, which facilitates the selection of antibiotic-resistant strains. The development of new antibiotics is, therefore, urgently needed. In this paper, we investigated the role of the sensory system of S. aureus in susceptibility to two new antibiotics: corbomycin and complestatin. The results shed light on the cell-wall synthesis processes that are affected by the presence of the antibiotic and the sensory system responsible for coordinating their activity.

8.
J Med Chem ; 66(13): 9006-9022, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315221

RESUMO

The continued efficacy of glycopeptide antibiotics (GPAs) against Gram-positive bacteria is challenged by the emergence and spread of GPA-resistant pathogens, particularly vancomycin-resistant enterococci (VRE). The growing frequency of GPA resistance propels the need for innovative development of more effective antibiotics. Unlike canonical GPAs like vancomycin, Type V GPAs adopt a distinct mode of action by binding peptidoglycan and blocking the activity of autolysins essential for cell division, rendering them a promising class of antibiotics for further development. In this study, the Type V GPA, rimomycin A, was modified to generate 32 new analogues. Compound 17, derived from rimomycin A through N-terminal acylation and C-terminal amidation, exhibited improved anti-VRE activity and solubility. In a VRE-A neutropenic thigh infection mouse model, compound 17 significantly lowered the bacterial load by 3-4 orders of magnitude. This study sets the stage to develop next-generation GPAs in response to growing VRE infections.


Assuntos
Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Glicopeptídeos/farmacologia , Glicopeptídeos/uso terapêutico , Glicopeptídeos/química , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Testes de Sensibilidade Microbiana , Biologia Sintética , Vancomicina/farmacologia , Vancomicina/química
9.
Nat Chem ; 15(9): 1285-1295, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37308709

RESUMO

The acylhydrazone unit is well represented in screening databases used to find ligands for biological targets, and numerous bioactive acylhydrazones have been reported. However, potential E/Z isomerization of the C=N bond in these compounds is rarely examined when bioactivity is assayed. Here we analysed two ortho-hydroxylated acylhydrazones discovered in a virtual drug screen for modulators of N-methyl-D-aspartate receptors and other bioactive hydroxylated acylhydrazones with structurally defined targets reported in the Protein Data Bank. We found that ionized forms of these compounds, which are populated under laboratory conditions, photoisomerize readily and the isomeric forms have markedly different bioactivity. Furthermore, we show that glutathione, a tripeptide involved with cellular redox balance, catalyses dynamic E⇄Z isomerization of acylhydrazones. The ratio of E to Z isomers in cells is determined by the relative stabilities of the isomers regardless of which isomer was applied. We conclude that E/Z isomerization may be a common feature of the bioactivity observed with acylhydrazones and should be routinely analysed.


Assuntos
Compostos de Sulfidrila , Isomerismo , Bases de Dados de Proteínas
10.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310875

RESUMO

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Humanos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Resistência Microbiana a Medicamentos/genética , Metagenômica/métodos
11.
Proc Natl Acad Sci U S A ; 120(16): e2221253120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37043535

RESUMO

The outer membrane of gram-negative bacteria prevents many antibiotics from reaching intracellular targets. However, some antimicrobials can take advantage of iron import transporters to cross this barrier. We showed previously that the thiopeptide antibiotic thiocillin exploits the nocardamine xenosiderophore transporter, FoxA, of the opportunistic pathogen Pseudomonas aeruginosa for uptake. Here, we show that FoxA also transports the xenosiderophore bisucaberin and describe at 2.5 Å resolution the crystal structure of bisucaberin bound to FoxA. Bisucaberin is distinct from other siderophores because it forms a 3:2 rather than 1:1 siderophore-iron complex. Mutations in a single extracellular loop of FoxA differentially affected nocardamine, thiocillin, and bisucaberin binding, uptake, and signal transduction. These results show that in addition to modulating ligand binding, the extracellular loops of siderophore transporters are of fundamental importance for controlling ligand uptake and its regulatory consequences, which have implications for the development of siderophore-antibiotic conjugates to treat difficult infections.


Assuntos
Antibacterianos , Sideróforos , Sideróforos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ligantes , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ferro/metabolismo , Transdução de Sinais , Pseudomonas aeruginosa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo
12.
Lancet Reg Health Am ; 16: 100393, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36415218

RESUMO

Antimicrobial Resistance (AMR) causes more than a million deaths globally per year due to infections incurable with currently available antibiotics. Failing to effectively address AMR will have significant negative consequences for Canadians and the Canadian economy. Canada is behind on allocation of required funding and nationally coordinated AMR mitigation strategies relative to other high-income countries. A Pan-Canadian AMR action plan and development of a new governance model is pending. Recent AMR-specific funding commitments are significant but fall short while distribution of funds indicate a siloed approach. Canada could initiate progress towards AMR mitigation through incorporation within the scope of budget allocations intended for COVID-19 recovery and mitigation efforts. We discuss the following components for inclusion: development of infectious disease diagnostics and therapeutics; antimicrobial stewardship interventions in long-term care and Indigenous communities; environmental monitoring of AMR; comprehensive antimicrobial use, and AMR surveillance; and support for capacity-building in low and middle-income countries.

13.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36179219

RESUMO

The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation. To address this aim, the Canadian Institute for Advanced Research (CIFAR) and the Burroughs Wellcome Fund convened a workshop to unite leading experts on fungal biology from academia and industry to strategize innovative solutions to global challenges and fungal threats. This report provides recommendations to accelerate fungal research and highlights the major research advances and ideas discussed at the meeting pertaining to 5 major topics: (1) Connections between fungi and climate change and ways to avert climate catastrophe; (2) Fungal threats to humans and ways to mitigate them; (3) Fungal threats to agriculture and food security and approaches to ensure a robust global food supply; (4) Fungal threats to animals and approaches to avoid species collapse and extinction; and (5) Opportunities presented by the fungal kingdom, including novel medicines and enzymes.


Assuntos
Micoses , Animais , Humanos , Micoses/microbiologia , Fungos , Ecossistema , Canadá , Plantas
14.
Sci Transl Med ; 14(657): eabo7793, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947678

RESUMO

Antibiotics have transformed modern medicine. They are essential for treating infectious diseases and enable vital therapies and procedures. However, despite this success, their continued use in the 21st century is imperiled by two orthogonal challenges. The first is that the microbes targeted by these drugs evolve resistance to them over time. The second is that antibiotic discovery and development are no longer cost-effective using traditional reimbursement models. Consequently, there are a dwindling number of companies and laboratories dedicated to delivering new antibiotics, resulting in an anemic pipeline that threatens our control of infections. The future of antibiotics requires innovation in a field that has relied on highly traditional methods of discovery and development. This will require substantial changes in policy, quantitative understanding of the societal value of these drugs, and investment in alternatives to traditional antibiotics. These include narrow-spectrum drugs, bacteriophage, monoclonal antibodies, and vaccines, coupled with highly effective diagnostics. Addressing the antibiotic crisis to meet our future needs requires considerable investment in both research and development, along with ensuring a viable marketplace that encourages innovation. This review explores the past, present, and future of antimicrobial therapy.


Assuntos
Antibacterianos , Vacinas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Vacinas/uso terapêutico
15.
Microbiome ; 10(1): 136, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36008821

RESUMO

BACKGROUND: Probiotic use in preterm infants can mitigate the impact of antibiotic exposure and reduce rates of certain illnesses; however, the benefit on the gut resistome, the collection of antibiotic resistance genes, requires further investigation. We hypothesized that probiotic supplementation of early preterm infants (born < 32-week gestation) while in hospital reduces the prevalence of antibiotic resistance genes associated with pathogenic bacteria in the gut. We used a targeted capture approach to compare the resistome from stool samples collected at the term corrected age of 40 weeks for two groups of preterm infants (those that routinely received a multi-strain probiotic during hospitalization and those that did not) with samples from full-term infants at 10 days of age to identify if preterm birth or probiotic supplementation impacted the resistome. We also compared the two groups of preterm infants up to 5 months of age to identify persistent antibiotic resistance genes. RESULTS: At the term corrected age, or 10 days of age for the full-term infants, we found over 80 antibiotic resistance genes in the preterm infants that did not receive probiotics that were not identified in either the full-term or probiotic-supplemented preterm infants. More genes associated with antibiotic inactivation mechanisms were identified in preterm infants unexposed to probiotics at this collection time-point compared to the other infants. We further linked these genes to mobile genetic elements and Enterobacteriaceae, which were also abundant in their gut microbiomes. Various genes associated with aminoglycoside and beta-lactam resistance, commonly found in pathogenic bacteria, were retained for up to 5 months in the preterm infants that did not receive probiotics. CONCLUSIONS: This pilot survey of preterm infants shows that probiotics administered after preterm birth during hospitalization reduced the diversity and prevented persistence of antibiotic resistance genes in the gut microbiome. The benefits of probiotic use on the microbiome and the resistome should be further explored in larger groups of infants. Due to its high sensitivity and lower sequencing cost, our targeted capture approach can facilitate these surveys to further address the implications of resistance genes persisting into infancy without the need for large-scale metagenomic sequencing. Video Abstract.


Assuntos
Nascimento Prematuro , Probióticos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Suplementos Nutricionais , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro
16.
Mol Cell ; 82(17): 3151-3165.e9, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35907401

RESUMO

Rifamycin antibiotics such as rifampin are potent inhibitors of prokaryotic RNA polymerase (RNAP) used to treat tuberculosis and other bacterial infections. Although resistance arises in the clinic principally through mutations in RNAP, many bacteria possess highly specific enzyme-mediated resistance mechanisms that modify and inactivate rifamycins. The expression of these enzymes is controlled by a 19-bp cis-acting rifamycin-associated element (RAE). Guided by the presence of RAE sequences, we identify a helicase-like protein, HelR, in Streptomyces venezuelae that confers broad-spectrum rifamycin resistance. We show that HelR also promotes tolerance to rifamycins, enabling bacterial evasion of the toxic properties of these antibiotics. HelR forms a complex with RNAP and rescues transcription inhibition by displacing rifamycins from RNAP, thereby providing resistance by target protection . Furthermore, HelRs are broadly distributed in Actinobacteria, including several opportunistic Mycobacterial pathogens, offering yet another challenge for developing new rifamycin antibiotics.


Assuntos
Rifamicinas , Tuberculose , Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Rifampina/metabolismo , Rifampina/farmacologia , Rifamicinas/farmacologia , Streptomyces/enzimologia
17.
Nat Commun ; 13(1): 3634, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752611

RESUMO

Fungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections. Here, we use a combinatorial screening approach to identify an imidazopyrazoindole, NPD827, that synergizes with fluconazole against azole-sensitive and -resistant isolates of Candida albicans. NPD827 interacts with sterols, resulting in profound effects on fungal membrane homeostasis and induction of membrane-associated stress responses. The compound impairs virulence in a Caenorhabditis elegans model of candidiasis, blocks C. albicans filamentation in vitro, and prevents biofilm formation in a rat model of catheter infection by C. albicans. Collectively, this work identifies an imidazopyrazoindole scaffold with a non-protein-targeted mode of action that re-sensitizes the leading human fungal pathogen, C. albicans, to azole antifungals.


Assuntos
Azóis , Fluconazol , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Biofilmes , Candida albicans , Farmacorresistência Fúngica , Fluconazol/farmacologia , Homeostase , Testes de Sensibilidade Microbiana , Ratos
18.
ACS Cent Sci ; 8(5): 615-626, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35647273

RESUMO

The rise and dissemination of glycopeptide antibiotic (GPA)-resistant pathogens in healthcare settings fuel efforts to discover GPAs that can overcome resistance. Members of the type V subclass of GPAs can evade common GPA resistance mechanisms and offer promise as new drug leads. We characterize five new type V GPAs-rimomycin-A/B/C and misaugamycin-A/B-discovered through a phylogeny-guided genome mining strategy coupled with heterologous production using our GPAHex synthetic biology platform. Rimomycin is a heptapeptide similar to kistamicin but includes an N-methyl-tyrosine at amino acid 6 (AA6) and substitutes 4-hydroxyphenylglycine for tyrosine and 3,5-dihydroxyphenylglycine at positions AA1 and AA3. Misaugamycin is characterized by an unprecedented N-C cross-link between AA2 and AA4 and unique N-terminal acylation by malonyl (misaugamycin-A) or 2-sulfoacetyl (misaugamycin-B) groups. We demonstrate that rimomycin-A/B/C and misaugamycin-A/B are potent antibiotics with activity against GPA-resistant clinical isolates and that the mode of action is consistent with the inhibition of cell division by the evasion of autolysin activity. These discoveries expand the chemical diversity of the type V GPAs, offer new chemical scaffolds for drug development, and demonstrate the application of the GPAHex platform in mining GPA chemical "dark matter".

19.
ACS Chem Biol ; 17(6): 1343-1350, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584803

RESUMO

With resistance to current agricultural fungicides rising, a great need has emerged for new antifungals with unexploited targets. In response, we report a novel series of diazaborines with potent activity against representative fungal plant pathogens. To identify their mode of action, we selected for resistant isolates using the model fungus Saccharomyces cerevisiae. Whole-genome sequencing of independent diazaborine-resistant lineages identified a recurring mutation in ERG25, which encodes a C-4 methyl sterol oxidase required for ergosterol biosynthesis in fungi. Haploinsufficiency and allele-swap experiments provided additional genetic evidence for Erg25 as the most biologically relevant target of our diazaborines. Confirming Erg25 as putative target, sterol profiling of compound-treated yeast revealed marked accumulation of the Erg25 substrate, 4,4-dimethylzymosterol and depletion of both its immediate product, zymosterol, as well as ergosterol. Encouraged by these mechanistic insights, the potential utility of targeting Erg25 with a diazaborine was demonstrated in soybean-rust and grape-rot models of fungal plant disease.


Assuntos
Ergosterol , Oxigenases de Função Mista , Antifúngicos/farmacologia , Oxigenases de Função Mista/genética , Saccharomyces cerevisiae/genética , Esteróis
20.
Methods Enzymol ; 665: 325-346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35379441

RESUMO

Glycopeptide antibiotics are essential drugs used to treat infections caused by multi-drug resistant Gram-positive pathogens. There is a continuous need for new antibiotics, including GPAs, to address emerging resistance and offer desirable pharmacological profiles for improved efficacy. Microbial natural products are proven sources of antibiotics, and this source has dominated drug discovery over the past century. Bacteria from the phylum Actinobacteria are particularly renowned for producing a diverse range of bioactive natural products including glycopeptide antibiotics. The traditional approach to mining this resource is through the culture and extraction of natural products followed by assay for cell-killing activity. Unfortunately, this method no longer efficiently yields new antibiotic leads, delivering instead known compounds. Whole-genome sequencing programs on the other hand are revealing thousands of unexplored natural product biosynthetic gene clusters in the chromosomes of Actinobacteria. These gene clusters encode the necessary enzymes, transport and resistance mechanisms, along with regulatory elements for the biosynthesis of a variety of antibiotics. Identification of uncharacterized or cryptic biosynthetic gene clusters to unlock the chemical "dark matter" represents a new direction for the discovery of new drug candidates. This chapter discusses the identification of glycopeptide antibiotic biosynthetic gene clusters in microbial genomes, the improved production of these antibiotics using the GPAHex synthetic biology platform, and methods for their purification.


Assuntos
Produtos Biológicos , Glicopeptídeos , Antibacterianos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Descoberta de Drogas , Genômica , Glicopeptídeos/genética , Glicopeptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...